
R

A
o
M

B
f
r
e

M
t
i
s
e

R
m
n

C
v
e
d

K
g

A
g
s
f
c
i
s
a
a
i
a
r
D
a
i
i
p

i
e
a
R

F

A

R

0
d

EVIEW

 Meta-Analysis of D-Cycloserine and the Facilitation
f Fear Extinction and Exposure Therapy
elissa M. Norberg, John H. Krystal, and David F. Tolin

ackground: Translational research suggests that D-cycloserine (DCS), a partial N-methyl-D-aspartate (NMDA) receptor agonist, might
acilitate fear extinction and exposure therapy by either enhancing NMDA receptor function during extinction or by reducing NMDA
eceptor function during fear memory consolidation. This article provides a quantitative review of DCS-augmented fear extinction and
xposure therapy literature.

ethods: English-language journal articles that examined DCS augmented with fear extinction or exposure therapy were identified
hrough public databases from June 1998 through September 2007, through references of originally identified articles and contact with DCS
nvestigators. Data were extracted for study author, title, and year; trial design; type of subject (animal vs. human; clinical vs. nonclinical);
ample size, DCS dose, and timing in relation to extinction/exposure procedures; dependent variable; group means and SDs at post-
xtinction/exposure; and follow-up outcome.

esults: D-cycloserine enhances fear extinction/exposure therapy in both animals and anxiety-disordered humans. Gains generally were
aintained at follow-up, although some lessening of efficacy was noted. D-cycloserine was more effective when administered a limited

umber of times and when given immediately before or after extinction training/exposure therapy.

onclusions: This meta-analysis suggests that DCS is a useful target for translational research on augmenting exposure-based treatment
ia compounds that impact neuroplasticity. D-cycloserine ’s major contribution to exposure-based therapy might be to increase its speed or
fficiency, because the effects of DCS seem to decrease over repeated sessions. This information might guide translational researchers in

iscovering more selective and/or effective agents that effectively enhance (or reduce) NMDA receptor function.
ey Words: Anxiety, D-cycloserine, exposure therapy, extinction,
lutamate, neuroplasticity, NMDA

growing body of evidence suggests that the extinction of
fear is mediated by N-methyl-D-aspartate (NMDA) recep-
tor activity in basolateral amygdala (1–7). The NMDA

lutamate receptor function can be enhanced indirectly and
afely by stimulation of the high-affinity glycine binding site, a
eature of the NMDA glutamate receptor complex (8). D-cy-
loserine (DCS) is a partial agonist of the glycine site and
ndirectly increases glutamatergic activity in previously “silent”
ynapses (9). Nevertheless, DCS has complex modulatory actions
t NMDA glutamate receptors. When surrounding glycine levels
re low, it facilitates NMDA receptor function with up to approx-
mately 60% of the efficacy of glycine, but when glycine levels
re sufficient to saturate glycineB sites, DCS might reduce NMDA
eceptor function by as much as 40%–50% (10 –12). Therefore,
CS might improve the efficacy of exposure-based psychother-
pies by enhancing NMDA receptor functioning, thereby increas-
ng neuroplasticity or by reducing NMDA receptor function and
nterfering with the (re)consolidation of fear memories. Both
rocesses are thought to facilitate fear extinction (13).

Studies of fear extinction in animals suggest that DCS might
ncrease or accelerate extinction effects. In one study by Walker
t al. (14), rats were conditioned to exhibit a startle reflex toward
 light after the light was paired repeatedly with a foot shock.
ats were injected with either saline or DCS (15 mg) and tested
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with or without extinction training (light exposure without shock).
Only rats that received DCS in addition to extinction training
showed a reduction in fear-potentiated startle; rats that received
DCS without extinction training did not benefit. In a follow-up
experiment, injection of a glycine site antagonist, HA-966, blocked
DCS extinction enhancement. These results suggest that the facili-
tative effects of DCS are not due to any anxiety-attenuating proper-
ties but rather to the mediation of the neural mechanisms of
extinction. In another experiment performed by these authors, DCS
was associated with a dose-dependent enhancement of extinction
effects. Rats that received moderate (15 mg/kg) or high (30 mg/kg)
DCS doses showed a greater extinction effect (less startle) than
those who received a low-dose DCS (3.25 mg/kg); however, there
were no differences between rats that received moderate and high
DCS doses, suggesting that a moderate dose is sufficient to facilitate
extinction. A subsequent study (15) extended the findings of Walker
et al. (14) with lower DCS doses. At lower doses (2.5, 5, and 10
mg/kg), a dose-response relationship was found when DCS was
administered immediately after extinction training. This finding
suggests that DCS facilitates extinction by acting on memory con-
solidation processes that take place after training.

Given the similarity between fear extinction training in ani-
mals and exposure-based psychotherapy in humans, transla-
tional research from preclinical to clinical work has begun with
DCS. In the first study with humans, Ressler et al. (16) reported
that DCS administration did not affect baseline subjective fear
levels in patients receiving virtual reality exposure therapy for
specific phobia of heights, replicating the animal findings that the
effects of DCS are not due to anxiolytic properties. Patients
receiving either 50 or 500 mg DCS seemed to benefit more from
virtual reality exposure therapy than patients receiving placebo
(PBO). These results have been replicated and extended with 50
to 125 mg of DCS in combination with exposure therapy for
patients with social anxiety, panic, and obsessive-compulsive

disorder (OCD) (17–20).
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As the preclinical and clinical studies demonstrating the
bility of DCS to augment extinction/exposure therapy accumu-
ate, there is a growing need for a succinct review of this
iterature. Numerous qualitative reviews of this translational
esearch have identified DCS as a pharmacological agent that
acilitates extinction learning in rats and potentially exposure
herapy with anxiety-disordered humans (7,21–31). A quantita-
ive description of this literature could allow for stronger infer-
nces to be made regarding the ability of DCS to improve
xtinction/exposure therapy and provide methodological sug-
estions for future research.

The present study employed meta-analytic strategies (32) to
xamine the literature on the ability of DCS to facilitate fear
xtinction/exposure therapy. Specifically, the effects of fear
xtinction/exposure therapy combined with DCS were com-
ared with the effects of fear extinction/exposure therapy com-
ined with PBO at post-treatment and follow-up. The effects of
CS also were compared between animals and humans and
etween nonclinical/subclinical participants and anxiety-disor-
ered humans. Lastly, the moderating effects of dose, dose
iming, and number of dose sessions were explored.

ethods and Materials

ata Sources
Journal articles were identified through searches of the Med-

ine and PsychINFO electronic databases from June 1998 through
eptember 2007 with the search terms [(DCS or D-Cycloserine)
nd (extinction or exposure therapy)] and restricting to the
nglish language. Relevant studies also were identified through
eferences of originally identified articles and contact with DCS
nvestigators. This literature search identified 44 articles, which
hen were examined for inclusion.

tudy Selection
Randomized, PBO-controlled trials were included if: 1) suffi-

ient information was provided to compute effect sizes (or
ecessary additional information was supplied by the authors)
nd if they 2) examined DCS augmented with fear extinction in
nimals or humans or 3) examined DCS augmented with expo-
ure therapy for clinical or nonclinical anxiety in humans. From
he original pool, 29 articles were excluded from analysis.
easons for study exclusion included the following:

1. The article was a review that did not present new data or
only presented qualitative information (n � 12) (7,21–31).

2. The article examined the effects of DCS on something other
than fear extinction, such as perception or impulsive be-
havior (n � 7) (33–39).

3. The article tested the effects of DCS after exposure to a drug
of abuse (n � 3) (40–42).

4. The article tested DCS in conjunction with another sub-
stance (n � 2) (43,44).

5. Extinction training varied between PBO and DCS groups
(n � 1) (45).

6. Sufficient information to compute effect sizes could not be
obtained either from the article or from the primary author
(n � 4) (46–49).

The 15 resultant articles yielded 30 independent samples
omparing DCS versus PBO. Of the samples included in the
eta-analysis, 10 included humans and 2 of them examined

onclinical participants.
Data Extraction
Data were extracted for study author, title, and year; trial

design; type of subject (animal vs. human; clinical vs. nonclini-
cal); sample size, DCS dose, and timing in relation to extinction/
exposure procedures; dependent variable; and group means and
SDs at post-extinction/exposure and (when available) at follow-
up. Data were extracted by one of the authors and verified by
another author. Table 1 shows the studies used in the present
meta-analysis.

For three of the human clinical studies, multiple potential
dependent measures were available. Two studies of OCD (19,20)
found a significant DCS versus PBO effect after 5 sessions but not
after 10. Because the timing of DCS effects in longer trials is not
yet well understood, only data from the fifth session were
extracted. One study of social phobia (50) employed three
different standardized self-report measures of social anxiety.
Because two of them are not commonly used in trials of
experimental medications, only the outcomes for a measure
widely used in clinical trials, the Liebowitz Social Anxiety Scale
(51), were retained. These choices might increase the likelihood
of Type I error by inflating the effect size for clinical samples;
however, given the relative novelty of DCS augmentation and the
exploratory nature of the present analysis, it was felt that this risk
was preferable to the possibility of missing a clinically meaning-
ful effect.

Data Synthesis
Data were analyzed with Comprehensive Meta-Analysis v.2.2

software. For each comparison of a DCS versus PBO sample, we
calculated Cohen’s d. A d value of .0 indicates no difference
between DCS and PBO participants; conventionally, .2, .5, and .8
are taken to represent small, medium, and large effects, respec-
tively (52). We also calculated the 95% confidence interval (CI),
statistical significance (p), and within-group heterogeneity
(Qwithin) for each effect size estimate. Effect size estimates are
considered significantly different from one another when their
95% CIs do not overlap. For additional clarification of differences
between effect size estimates, we calculated the mixed-effects
between-group heterogeneity (Qbetween). An initial test of homo-
geneity of variance indicated heterogeneity across samples,
Qwithin (29) � 74.18, p � .001; therefore, random-effects models
were used. Studies varied according to sample size (range
15–63); this creates a risk that a small, outlying sample will exert
disproportionate influence over the mean effect size. To mini-
mize this risk, we weighted effect size estimates by sample size
(53). To test the so-called “file drawer effect” (the probability that
unpublished null results would eliminate the obtained results),
for each significant result we computed the “fail-safe N” (FSN) or
the number of null results that would be needed to overturn a
significant result. For the present analyses, we examined the num-
ber of studies that would make p � .05. Generally, if the FSN � 5
times the number of studies in the analysis � 10 (FSN � 5k �
10), the obtained results are considered robust against the file
drawer effect (53). In addition to more traditional measures
(questionnaires and interviews), some of the human studies also
used dependent variables that are atypical in clinical trials (e.g.,
shock expectancy ratings, skin conductance changes). To max-
imize consistency across studies, data for the human studies were
limited to the best-available measure of subjective symptoms,
such as semistructured interviews (18,19,54), standardized self-
report (17,50), or when these were not available, subjective fear
ratings (16,20,55). Moderator variables (dose, dose timing, num-

ber of sessions) were tested with linear regression analyses. The

www.sobp.org/journal
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CS dose was standardized across studies by calculating human
quivalent dose (HED) in mg/kg with formulas set by the U.S.
ood and Drug Administration (56). This was done only for
tudies using systemic DCS administration; studies using intra-
mygdala administration (14,15) were not used for dose-re-
ponse analyses. Dose timing was calculated as the number of
ours before the beginning of extinction/exposure that DCS was
dministered (negative numbers indicate that DCS was adminis-
ered before the beginning of extinction/exposure; positive
umbers indicate that DCS was administered after the beginning
f extinction/exposure; a score of 0 indicates that DCS was
dministered exactly at the beginning of extinction/exposure).
umber of sessions indicates the number of concurrent DCS �
xtinction/exposure sessions that were used. Studies in which
ultiple doses of DCS were given in the absence of extinction/

xposure (57) were not included in this analysis.

esults

Effect sizes (Cohen’s d) for all studies and specific subgroups

able 1. Studies Included in the Meta-Analysis

tudy Name d (post) d (FU) H

nimal Studies
Ledgerwood et al. (15) Study 1 1.22 —
Ledgerwood et al. (15) Study 2 3.49 .02
Ledgerwood et al. (15) Study 3 1.43 —
Ledgerwood et al. (15) Study 3 .54 —
Ledgerwood et al. (15) Study 3 .80 —
Ledgerwood et al. (15) Study 4 2.76 —
Ledgerwood et al. (15) Study 4 1.43 —
Ledgerwood et al. (15) Study 4 .84 —
Ledgerwood et al. (15) Study 4 2.63 —
Ledgerwood et al. (15) Study 5 1.26 —
Ledgerwood et al. (66) 1.09 2.42
Lee et al. (81) .93 —
Lee et al. (81) 1.91 —
Parnas et al. (57) 1.88 —
Walker et al. (14) 1.17 —
Weber et al. (68) Study 1 .05 —
Weber et al. (68) Study 2 1.05 —
Weber et al. (68) Study 4 1.25 —
Woods & Bouton (82) �.50 —
Woods & Bouton (82) .69 —

uman Nonclinical Studies
Guastella et al. (55) Study 1 �.21 �.11
Guastella et al. (55) Study 2 .00 �.43

uman Clinical Studies
Specific phobia

Ressler et al. (16) .36 .27
Ressler et al. (16) .86 .47

Social phobia
Guastella et al. (50) .65 —
Hofmann et al. (17) .43 .80

Panic Disorder
Tolin et al. (18) 1.11 .86

Obsessive-Compulsive Disorder
Kushner et al. (20) .89a .43
Storch et al. (54) �.19 �.36
Wilhelm et al. (19) .70a .57

d, Cohen’s d; FU, follow-up; HED, human equivalent dose; SUDS, subject
nteraction Anxiety Scale (84); PDSS, Panic Disorder Severity Scale (85); Y-BO

aSession 5 data used for post-treatment effect size.
re shown in Table 2. At post-treatment (Table 2), human studies

ww.sobp.org/journal
were compared with studies of animals. This comparison yielded
a significant difference (Qbetween � 10.18), with greater effects
seen in animal studies. Both animal and human studies never-
theless were associated with significant effect sizes, with a large
and robust effect in animal studies (d � 1.19) and a small (but not
robust) effect in human studies (d � .42). Although within-group
heterogeneity in the human studies was not statistically signifi-
cant (p � .08), we wondered whether the outcomes for the two
nonclinical human samples (55) might differ from those of
clinical samples. This comparison yielded a significant difference
(Qbetween � 8.57). The effect for the two nonclinical samples was
not significant (in fact, the effect neared the small range in the
opposite direction, with PBO seeming slightly superior to DCS,
d � �.16). The human clinical studies showed a moderate effect
(d � .60), although this effect remained lower than that of the
animal studies (Qbetween � 6.61). Examining all studies together,
DCS was associated with a significant overall effect size versus
PBO when added to extinction/exposure. This effect was in the
large range (d � .90) and is considered robust against the

g/kg) Dose Timing Measure # Sessions

42 �.25 % Time Freezing 1
42 .40 % Time Freezing 1
61 .40 % Time Freezing 1
40 .40 % Time Freezing 1
81 .40 % Time Freezing 1
42 .40 % Time Freezing 1
42 2.40 % Time Freezing 1
42 4.40 % Time Freezing 1
42 .90 % Time Freezing 1
61 .40 % Time Freezing 1
42 .40 % Time Freezing 1
42 �.33 % Time Freezing 1
42 .00 % Time Freezing 1
42 .40 % Time Freezing 1

�.25 % Increase Startle 1
42 .43 % Time Freezing 1
42 .43 % Time Freezing 1
42 .43 % Time Freezing 1
42 �.25 Suppression ratio 1
84 �.25 Suppression ratio 1

83 �2.50 SUDS 1
58 �2.50 SUDS 1

83 �3.00 SUDS 2
33 �3.00 SUDS 2

83 �1.00 LSAS 4
83 �1.00 SIAS 4

83 �1.00 PDSS 3

08 �2.00 SUDS 5
17 �4.00 Y-BOCS 12
67 �1.00 Y-BOCS 5

its of discomfort (83); LSAS, Liebowitz Social Anxiety Scale (51); SIAS, Social
ale-Brown Obsessive-Compulsive Scale (86).
ED (m

2.
2.
1.
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.
2.
2.
2.
2.
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2.
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2.
2.
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A minority of studies included follow-up data (Table 2).
nimal and human studies did not differ significantly from each
ther (Qbetween � .58). Only human studies were associated with
significant effect size (d � .29), although the effect size was
umerically much higher for animal studies than for human
tudies (d � 1.20). As was the case for the post-treatment data, a
ignificant difference was obtained between human clinical and
onclinical studies (Qbetween � 6.42), with clinical studies show-
ng a significant and small (although not robust) effect size (d �
47) and nonclinical studies showing no effect (d � �.19).
nimal and human clinical studies did not differ significantly

rom each other (Qbetween � .37). Across all available studies,
CS augmentation was associated with a significant and small
ffect size (d � .40), although this was not robust against the file
rawer effect.

Next, we examined the effect of potential moderating vari-
bles on the effect of DCS versus PBO at post-treatment.
egression analyses (Figure 1) showed that DCS dose (HED) was
ot significantly associated with DCS effect (z � .51, p � .61);
his was true for subgroups of animal, human clinical, and
uman nonclinical studies (not shown). The timing of the DCS
ose significantly predicted effect size (z � 4.53, p � .001), with
he greatest effects evident among studies in which DCS was
dministered either immediately before or after exposure/extinc-
ion. Studies in which DCS was administered multiple hours
efore exposure/extinction had smaller effects. Number of DCS �
xposure/extinction sessions also predicted treatment outcome
z � �2.19, p � .03), with smaller effects seen for those studies
n which DCS � exposure was given many times. Visual exam-
nation of Figure 1 suggests that this effect might have been the
esult of one outlying study (54); when this study was eliminated
rom analysis, there was no longer a significant relationship
etween treatment outcome and number of DCS � exposure
essions (z � �.47, p � .64). For additional exploration of the
elationship between number of sessions and DCS effect, we
xamined three OCD treatment outcome studies (19,20,54) in

able 2. Effect Sizes and Comparisons Across Subgroups of Studies

omparison k n

ost-Treatment
Animal 20 336 1.
Human 10 296 .
Animal vs. human
Human clinical 8 212 .
Human nonclinical 2 84 �.
Human clinical vs. nonclinical
Human clinical vs. animal
All studies 30 632 .

ollow-Up
Animal 2 36 1.
Human 10 292 .
Animal vs. human
Human clinical 8 208 .
Human nonclinical 2 84 �.
Human clinical vs. nonclinical
Human clinical vs. animal
All studies 12 328 .

k, number of independent samples; n, number of participants; d, Cohen
ariance; Qbetween, between-group homogeneity of variance.

ap � .001.
bRobust against the file-drawer effect (FSN � 5k � 10).
cp � .05.
hich DCS was compared with PBO at mid- and post-treatment.
As shown in Figure 2, all three studies showed a parallel decrease
in DCS efficacy over time.

Discussion

The results of the present meta-analysis suggest that DCS
augments the effects of fear extinction/exposure therapy in both
animals and humans. Across all samples, the effect size was
large, indicating a substantial increase in efficacy. Although there
is ample evidence that exposure-based treatment is effective for
the treatment of anxiety disorders, many patients fail to respond
adequately to treatment—for example, in studies of panic disor-
der, only one-half of treated patients met criteria for recovery/
high end-state functioning (58,59), and many patients seek
additional treatment within two years after termination (60).
Although it might be expected that combining exposure-based
therapy with traditional antidepressant or anxiolytic pharmacother-
apy would be more effective than therapy alone, the literature to
date has not supported this hypothesis. For example, recent large-
scale trials for social phobia (61), OCD (62), and panic disorder
(63) failed to provide compelling evidence of a long-term
beneficial effect of adding antidepressant medications to expo-
sure-based therapy; similar findings have been obtained in
studies augmenting exposure-based therapy with benzodiaz-
epines (64). Rather than an additive approach in which anxiety-
reducing psychotherapy and pharmacotherapy are combined,
DCS augmentation is based on an interactive model in which the
pharmacotherapy systematically targets and augments the pro-
posed neural mechanism of the psychotherapy.

Animal studies evidenced greater and more robust effects
than human studies; however, this difference was attenuated
when nonclinical human studies were removed from the
analyses. The two nonclinical studies found no evidence of
DCS augmentation in experimentally induced fear when using
a differential shock paradigm (46) or when using exposure
therapy for subclinical spider phobia (55). These results might

95% CI FSN Qwithin Qbetween

.84–1.54 473b 40.09c

.11–.74 22 15.38
10.18a

.33–.88 29 6.62
�.59–.27 — .19

8.57c

6.61c

.62–1.18 743b 74.18a

�1.14–3.55 — 9.64c

.01–.57 5 12.10
.58

.19–.75 13 5.28
�.62–.24 — .40

6.42c

.37
.05–.75 24 25.31c

I, confidence interval; FSN, fail-safe n; Qwithin, within-group homogeneity of
d

19a

42c

60a

16

90a

20
29c

47a

19

40c

’s d; C
be explained by a ceiling effect: 100% of the subclinical spider

www.sobp.org/journal
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earful participants completed all behavioral assignments over
2-hour exposure session, which included handling large

piders that can produce painful bites (55). Typically, healthy

igure 1. Regressions of moderator variables against effect size. DCS, D-cyc
articipants or mildly phobic individuals do not require

ww.sobp.org/journal
extensive extinction training to return to preconditioning
levels.

A greater effect in animal studies is perhaps not surprising,

ine; HED, human equivalent dose.
given the greater experimental control over extraneous variables
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n animal studies. In animal studies, subjects only receive extinc-
ion training in the presence or absence of DCS, whereas human
atients are able to expose themselves to their feared situations
utside of the therapeutic context. In addition, research animals
re highly inbred, and thus results would be expected to be less
ariable.

Also noteworthy, the human studies were not robust against
he “file drawer” effect, likely owing to the relatively small
umber and sample sizes of existing studies (e.g., 8 human
linical studies with n � 84, compared with 20 animal studies
ith n � 336). Nevertheless, the generally comparable findings
cross animal and human studies suggest that DCS is a promising
ool for translational research concerned with enhancing (or
educing) NMDA receptor function as a method for improving
xposure-based therapy outcomes.

Relatively few studies have examined the long-term effects of
CS on fear extinction/exposure therapy, although the existing

tudies show significant and moderate effect sizes at follow-up.
hen analyzing animal and human studies separately, only

uman studies were associated with a significant effect size at
ollow-up. This finding is likely due to the small number of
nimal samples that provided follow-up data, as the effect size
or animal studies was numerically higher than human studies.
imilar to post-treatment data, nonclinical human studies were
ot associated with a significant effect of DCS at follow-up. These
reliminary results suggest that the effects of DCS augmentation
o not disappear upon treatment discontinuation, a potential
mprovement over other pharmacotherapy augmentation strate-
ies that might actually increase the risk of relapse after discon-
inuation (63,64).

The present results indicate that the augmenting effect of DCS
s potentially dependent on the timing and number of doses.
hese factors are perhaps best illustrated by Storch et al. (54),
ho did not find a positive effect of DCS versus PBO. Unlike the

wo other OCD trials (19,20), Storch et al. administered DCS for
longer period of time (12 weeks vs. 5 weeks) and used a longer
uration between administration and initiation of an exposure
ession (4 hours vs. 1–2 hours). Figure 1 clearly shows the Storch
t al. study as an outlier in terms of these two variables. When
his study was removed from analysis, the number of DCS
ugmented fear extinction/exposure therapy sessions was not
elated significantly to outcome; however, when the study was
ncluded in the analysis, smaller effects were seen for those
tudies that used a greater number of sessions. The finding that

he number of sessions was related negatively to outcome is
tentative, because two of the effect sizes used for the human
studies (both samples of OCD patients) were selected post hoc
from time points when a separation occurred from DCS and PBO
(19,20). Given the number of uncertainties in DCS research, the
mid-treatment time point was used so that potential differences
between DCS and PBO would not be missed; however, across all
three OCD studies, the effect of DCS decreased over repeated
sessions. This decrease might be the result of desensitization to
DCS (57) or it might reflect floor effects of repeated exposures
(i.e., with enough exposure therapy there might be little need for
augmentation). This suggests that DCS’s major contribution to
exposure-based therapy might be to increase its speed or
efficiency. Consistent with this suggestion, Ledgerwood et al.
(65) have demonstrated in animals that DCS can block the
reinstatement of previously extinguished fear and that its effects
can generalize to non-extinguished conditioned stimuli (66).
Increasing the speed of treatment is a worthwhile pursuit,
because it might be expected to lead to reduced attrition,
increased satisfaction, decreased treatment cost, increased ease
of dissemination to primary care, and decreased economic
burden of illness.

The finding that DCS is most effective when administered
immediately before or after fear extinction/exposure therapy
suggests that the augmenting effects of DCS take place during the
period of memory consolidation that occurs after training. Ani-
mal studies using NMDA receptor antagonists at various intervals
after extinction training suggest that NMDA-dependent fear
extinction occurs in waves lasting 1–2 days after training, as
hippocampal-neocortical synaptic connections are strengthened
(67). Because DCS reaches peak plasma levels 4–8 hours after
oral administration, drug levels would be expected to be highest
during the period of post-session memory consolidation if ad-
ministered after a fear extinction/exposure therapy session.
Another potential benefit of administering DCS immediately after
fear extinction/exposure therapy sessions is the possibility for
the clinician to administer DCS only after sessions in which
within-session extinction has occurred. This procedure would be
consistent with animal research showing that DCS leads to
long-term gains only for animals exhibiting within-session ex-
tinction (68). Such selective administration would also lessen the
possibility of tolerance due to chronic administration, as de-
scribed in the preceding text.

The DCS dose was not significantly associated with DCS effect
in any subgroup. This null finding should be considered tenta-

Figure 2. Effect sizes at mid- (Mid-Tx) and post-treatment
(Post-Tx) for three studies of D-cycloserine augmentation
of behavior therapy for obsessive-compulsive disorder.
tive, because only two studies to date have compared multiple
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oses within a single study. Ledgerwood et al. (15) found effects
f .54, .80, and 1.43 for DCS versus PBO in rats with 2.5 mg, 5 mg,
nd 10 mg, respectively, whereas Ressler et al. (16) found effects
f .36 and .86 for DCS versus PBO in phobic humans with 50 mg
nd 500 mg, respectively. In both of these studies a pattern of
reater effects was evidenced at higher doses.

The beneficial effects of DCS in anxiety disorders contrast
ith findings from the use of DCS as a corrective treatment for
eurocognitive deficits in schizophrenia and Alzheimer’s disease
69,70). Despite early promising results (71–73), larger and more
ecent trials (74–76) yielded generally nonsignificant findings
elative to PBO (70,77). In the treatment of schizophrenia and
lzheimer’s disease, D-cycloserine has been applied in chronic
aily doses, unlike the extinction-augmenting applications used
n treatments of conditioned fear. As shown by the present
esults, isolated dosing might be more effective than chronic
osing for specific learning-based purposes, consistent with the
emonstration of desensitization of the NMDA receptor complex
n cell culture with prolonged exposure to DCS and other
lycinergic ligands (78).

Many questions remain unanswered concerning the useful-
ess of DCS augmented exposure therapy. For example, addi-
ional dose-finding research in animals and humans is needed to
larify how DCS might interact with other common psychiatric
edications. We excluded, as noted previously, two animal

tudies in which DCS was administered concurrently with other
edications (43,44). Yet, many of the human clinical studies

ncluded patients that received concurrent pharmacotherapy.
hus, it might initially seem that the inclusion criteria for the
eta-analysis differed across human and animal studies; how-

ver, the retained human clinical studies required a period of
edication stability that allows for a more definitive examination
f the effects of DCS, unlike the two animal studies that were
xcluded. One animal study (79) found that rats pre-exposed to
mipramine over 14 days showed reduced DCS facilitation of
xtinction training. Human trials of DCS administered along with
ntidepressant and benzodiazepine medications would clarify
his issue for clinical practice.

Another direction for future research is to examine whether
CS is effective for individuals who have not successfully

esponded to prior trials of exposure-based monotherapy. Such
pplication would likely reflect typical clinical practice, in which
ovel or “off label” compounds are administered after the failure
f more conventional treatments. To the extent that treatment
ailure is due to inadequate within- or between-session extinc-
ion, DCS augmentation might be expected to enhance out-
omes.

In addition, DCS needs to be examined in the treatment of a
roader range of anxiety-related conditions. Early studies (16,29)
reated phobic disorders that are fairly homogeneous and whose
reatment is easily standardized. Recent results with chronic and
eterogeneous conditions such as OCD (19,20,54) have been
ore mixed but overall seem consistent with the previous

indings. Additional research with conditions such as posttrau-
atic stress disorder, also treated with exposure-based interven-

ions (80), would help clarify the range of DCS applicability.
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